A new class of chiral materials hosting magnetic skyrmions beyond room temperature

نویسندگان

  • Y. Tokunaga
  • X. Z. Yu
  • J. S. White
  • H. M. Rønnow
  • D. Morikawa
  • Y. Taguchi
  • Y. Tokura
چکیده

Skyrmions, topologically protected vortex-like nanometric spin textures in magnets, have been attracting increasing attention for emergent electromagnetic responses and possible technological applications for spintronics. In particular, metallic magnets with chiral and cubic/tetragonal crystal structure may have high potential to host skyrmions that can be driven by low electrical current excitation. However, experimental observations of skyrmions have been limited to below room temperature for the metallic chiral magnets, specifically for the MnSi-type B20 compounds. Towards technological applications, transcending this limitation is crucial. Here we demonstrate the formation of skyrmions with unique spin helicity both at and above room temperature in a family of cubic chiral magnets: β-Mn-type Co-Zn-Mn alloys with a different chiral space group from that of B20 compounds. Lorentz transmission electron microscopy, magnetization and small-angle neutron scattering measurements unambiguously reveal formation of a skyrmion crystal under application of a magnetic field in both thin-plate and bulk forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy

Néel skyrmions are of high interest due to their potential applications in a variety of spintronic devices, currently accessible in ultrathin heavy metal/ferromagnetic bilayers and multilayers with a strong Dzyaloshinskii-Moriya interaction. Here we report on the direct imaging of chiral spin structures including skyrmions in an exchange-coupled cobalt/palladium multilayer at room temperature w...

متن کامل

Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet.

Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature Tc, while ...

متن کامل

Skyrmion formation in magnetic thin films and heterostructures

Magnetic skyrmions are small magnetic domains that are topologically non-trivial as shown schematically in Fig. 1. They are characterized by a twist of the magnetization that forms a continuous winding of the magnetization across the domain. The topology is described by a quantized and conserved winding number. The term skyrmion arises from the original work of Skyrme some fifty years ago that ...

متن کامل

Topological excitations in a kagome magnet.

Chirality--that is, left or right handedness--is present in many scientific areas, and particularly in condensed matter physics. Inversion symmetry breaking relates chirality with skyrmions, which are protected field configurations with particle-like and topological properties. Here we show that a kagome magnet, with Heisenberg and Dzyaloshinskii-Moriya interactions, causes non-trivial topologi...

متن کامل

Observation of skyrmions in a multiferroic material.

A magnetic skyrmion is a topologically stable particle-like object that appears as a vortex-like spin texture at the nanometer scale in a chiral-lattice magnet. Skyrmions have been observed in metallic materials, where they are controllable by electric currents. Here, we report the experimental discovery of magnetoelectric skyrmions in an insulating chiral-lattice magnet Cu(2)OSeO(3) through Lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015